当前位置:首页 > 电商 > 正文

生物质气化集中供气系统(氧气集中供气系统)

摘要: 谁了解林产化工(生物质与能源工程)? 生物质能是通过植物光合作用固定在地球上的太阳能,最有可能成为21...

谁了解林产化工(生物质与能源工程)?

生物质能是通过植物光合作用固定在地球上的太阳能,最有可能成为21世纪的主要新能源之一。据估计,植物每年储存的能量约为世界主要燃料消耗量的10倍;然而,能源的利用率不到其总量的1%。为了完成自然界的碳循环,这些未被利用的生物质大部分会通过自然分解释放能量和碳,回归自然。事实上,生物质能是人类利用最早、最多、最直接的能源。迄今为止,全球仍有超过15亿人使用生物质作为生活能源。生物质燃烧是传统的利用方式,不仅热效率低,而且劳动强度大,污染严重。通过生物质能转化技术,可以高效利用生物质能生产各种清洁燃料,代替煤炭、石油和天然气等燃料发电。减少对化石能源的依赖,保护国家能源资源,减少能源消耗造成的环境污染。专家认为,生物质能将成为未来可持续能源的重要组成部分。到2015年,全球能源消耗总量的40%将来自生物质能。1.2能源与环境人类面临着发展和环境的双重压力。能源是社会发展的重要推动力。经济越发展,能源消耗越多,尤其是化石燃料消耗的增加。摆在我们面前的突出问题有两个:一个是环境污染越来越严重,另一个是地球上现有的化石燃料总有一天会被掏空。按照消耗量计算,世界石油资源最终将在未来50至80年内耗尽。到2059年,即世界上第一口油井诞生200周年时,世界上的石油资源可能会所剩无几。另一方面,由于化石燃料的过度消耗,这些有限的资源被过快过早地消耗,释放出大量过剩的能量和碳,打破了自然界的能量和碳平衡,是造成臭氧层破坏、全球变暖、酸雨等灾难性后果的直接因素。也就是说,如果不开发新能源来取代化石常规能源在能源结构中的主导地位,21世纪必将发生一场严重的、灾难性的能源和环境危机,这是下个世纪人类最有可能面临的三大灾难之一。1.国家安全。当然,发展生物质能并不是获得新能源的唯一途径。人类可以利用高科技手段获取核能,但其危害有目共睹。首先,核能的发展很可能给本已不安的世界带来新的不稳定因素,甚至直接威胁到人类的生存环境;其次,在下一个世纪人类的技术水平下,各个国家或集团所能达到的有限外太空区域的能源开发,必然会引发新的竞争或纷争,其祸福不言而喻。生物质能不仅是最安全、最稳定的能源,而且可以通过一系列的转化技术生产不同种类的能源,如通过固化和碳化生产生物质燃料,通过气化生产气体燃料,通过液化和植物油生产液体燃料,必要时生产电力等等。目前,世界各国特别是发达国家都在致力于发展高效、无污染的生物质能利用技术,保护本国的矿产能源资源,为国民经济的可持续发展提供根本保障。2.国外生物质能技术的发展。生物质能的开发和利用已经引起了世界各国政府和科学家的关注。许多国家都制定了相应的发展和研究计划,如日本的阳光计划、印度的绿色能源项目、美国的能源农场和巴西的酒精能源计划。其他国家,如丹麦、荷兰、德国、法国、加拿大、芬兰等。多年来一直在进行自己的研发,形成了自己有特色的生物质能源研发体系,具有自己的技术优势。2.1沼气技术主要用于厌氧法处理畜禽粪便和高浓度有机废水,是发展较早的生物质能利用技术。80年代以前,发展

如印度和中国的家用沼气池;而发达国家主要发展厌氧技术处理畜禽粪便和高浓度有机废水。目前,日本、丹麦、荷兰、德国、法国、美国等发达国家普遍采用厌氧法处理畜禽粪便,印度、菲律宾、泰国等发展中国家也建设了大中型沼气工程,示范畜禽粪便的应用。采用新的自循环厌氧技术。荷兰IC公司使啤酒废水厌氧处理的产气率达到了10m3/m3.d的水平,大大节省了投资、运行费用和占地面积。美国、英国、意大利等发达国家主要利用沼气技术处理垃圾。美国纽约Staten垃圾处理站投资2000万美元,采用湿法处理垃圾,日产沼气26万m3,用于发电和肥料回收。效益可观,预计10年可收回全部投资。在英国,废物被用作原料来产生18MW的沼气动力,未来10年将投资1.5亿英镑来建造更多的废物沼气发电厂。2.2生物质热解气化早在20世纪70年代,一些发达国家,如美国、日本、加拿大和欧共体国家,就开始了生物质热解气化技术的研究和开发。到80年代,美国有19家公司和研究机构从事生物质热解气化技术的研发;加拿大12所大学的实验室正在进行生物质热解气化技术的研究;此外,来自菲律宾、马来西亚、印度和印度尼西亚等发展中国家的教师也开展了这方面的研究。芬兰坦佩雷电力公司开始在瑞典建设废木材气化发电厂,装机容量60MW,产热量65mw。1996年投产:瑞典能源中心获得世界银行贷款,计划在巴西建设装机容量为20-3mw的电厂,利用生物质气化、联合循环发电等先进技术处理当地丰富的蔗渣资源。2.3生物质液体燃料是另一项有趣的技术,因为生物质液体燃料包括乙醇、植物油等。可作为清洁燃料直接替代汽油等石油燃料。巴西是乙醇燃料开发和应用最具特色的国家。70年代中期,为了摆脱对进口石油的过度依赖,实施了世界上最大的乙醇发展计划。到1991年,乙醇产量已经达到130亿升。在980万辆汽车中,近400万辆是纯乙醇汽车,其余大部分使用20%乙醇-汽油混合燃料,也就是说乙醇燃料占汽车燃料消耗量的50%。1996年,美国可再生资源实验室已经研究开发了利用纤维素废料生产酒精的技术,美国哈斯克尔工业集团建立了1MW。

稻壳发电示范工程:年处理稻壳12,000吨,年发电量800万度,年产酒精2,500吨,具有明显的经济效益。2.4其它技术 此外,生物质压缩技术可书固体农林废弃物压缩成型,制成可代替煤炭的压块燃料。如美国曾开发了生物质颗粒成型燃料:泰国、菲律宾和马来西亚等第三世界国家发展了棒状成型燃料。3.我国的生物质能源 我国基本上是一个农业国家农村人口占总人口的70%以上,生物质一直是农村的主要能源之一,在国家能源构成中也占有益要地位。3.1生物质能资源 我国现有森林、草原和耕地面积41.4亿公顷,理论上生物质资源理可达650亿吨/年以上(在但第平方公里土地面积上,植物经过光合作用而产生的有机碳量,每年约为158吨)。以平均热值为15,000千焦/公斤计算,折合理论资源最为33亿标准煤,相当于我国目前年总能耗的3倍以上。 实际上,目前可以作为能源利用的生物质主要包括秸秆、薪柴、禽畜粪便、生活垃圾和有机废渣废水等。据调查,目前我国秸秆资源量已超过7.2亿吨,约3.6亿吨标准煤,除约1.2亿吨作为饲料、造纸、纺织和建材等用途外其余6亿吨可作为能源用途:薪柴的来源主要为林业采伐、育林修剪和薪炭林,一项调查表明:我国年均薪柴产量约为1.27亿吨,折合标准煤0.74亿吨:禽畜粪便资源量约1.3亿吨标准煤;城市垃圾量生产量约1.2亿吨左右,并以每年8%-10%的速度增,据估算,我国可开发的生物质能资源总量约7亿吨标准煤。3.2生物质能源和利用我国生物质的能源利用绝大部分用于农村生活能源,极少部分用于乡镇企业的工业生产:而利用方式长期来一直以直接燃烧为主,只是近年来才开始采用新技术利用生物质能源,但规模较小。普及程度较低,在国家,甚至农村的能源结构中占有极小的比例。生物质直接燃烧方式不仅热效率低下,而且大量的烟尘和余灰的排放使人们的居住和生活环境日益恶化,对生态、社会和经济造成极其不利的影响。3.3市场需求可以预计,随着国民经济的发展和人民生活水平的提高,生物质能利用技术和装置的市场前景将会越来越广阔。3.4我国生物质能技术发展现状与问题 我国政府及有关部门对生物质能源利用极为重视,国家几位主要领导人曾多次批示和指示加强农作物秸秆的能源利用。国家科委已连续在三个国家五年计划中将生物质能技术的研究与应用列为重点研究项目,涌现出一大批优秀的科研成果和成功的应用范例,如产用沼气池、禽畜粪便沼气技术、生物质气化发电和集中供气、生物压块燃料等,取得了可观的社会效益和经济效益。同时,我国已形成一支高水平的科研队伍,包括国内有名的科研院所和大专院校:拥有一批热心从事生物质热裂解气化技术研究与开发的著名专家学者。 a.沼气技术是我国发展最早、曾晋遍推厂的生物质能源利用技术。70年代,我国为解决农村能源短缺的问题,曾大力开发和推广户用沼气地技术,全国已建成525万户用沼气池。在最近的连续三个五年计划中,国家都将发展新的沼气技术列为重点科技攻关项目,计划实施了一大批沼气及其利用的研究项目和示范工程。至今,我国已建设了大中型沼气池3万多个,总容积超过137万m3,年产沼气5,500万m3,仅100m3以上规模的沼气工程就达630多处,其中集中供气站583处,用户8.3万户,年均用气量431m3,主要用于处理禽畜粪便和有机废水。这些工程都取得了一定程度的环境效益和社会效益,对发展当地经济和我国厌氧技术起到了积极作用。在“九五”计划中,应用于处理高浓度有机废水和城市垃圾的高效厌氧技术被列为科技攻关重点项目,分别由中科院成都生物研究所和杭州能源环境研究所承担实施,现已取得预期的进展。我国厌氧技术及工程中存在的主要问题:相关技术研究少、辅助设备配套性差、自动化程度低、非标设备加工粗糙、工程造价高、开放式前后处理的二次污染严重等。b.我国的生物质气化技术近年有了长足的发展,气化炉的形式从传统上吸式、下吸式到最先进的流化床、快速流化床和双床系统等,在应用上除了传统的供热之外,最主要突破是农村家庭供气和气化发电上。“八五”期间,国家科委安排了“生物质热解气化及热利用技术”的科技攻关专题,取得了相当成果:采用氧气气化工艺,研制成功生物质中热值气化装置;以下吸式流化床工艺,研制成功l00户生物质气化集中供气系统与装置:以下吸式固定床工艺,研制成功食品与经济作物生物质气化烘干系统与装置;以流化床干馏工艺,研制成功1000户生物质气化 集中供气系统与装置。“九五”期间,国家科委安排了“生物质热解气化及相关技术”的科技攻关专题,重点研究开发1MW大型生物质气化发电技术和农村秸秆气化集中供气技术。目前全国已建成农村气化站近200多个,谷壳气化发电100多台套,气化利用技术的影响正在逐渐扩大。c.“八五”期间,我国开始了利用纤维素废弃物制取乙醇燃料技术的探索与研究,主要研究纤维素废弃物的稀酸水解及其发酵技术,并在“九五”期间进入中间试验阶段。我国已对植物油和生物质裂解油等代用燃料进行了初步研究:如植物油理化特性、酯化改性工艺和柴油机燃烧性能等方面进行了初步试验研究。“九五”期间,开展了野生油料植物分类调查及育种基地的建设。我国的生物质液化也有一定研究,但技术比较落后,主要开展高压液化和热解液化方面的研究。d.此外,在“八五”期间,我国还重点对生物质压缩成型技术进行了科技攻关,引进国外先进机型,经消化、吸收,研制出各种类型的适合我国国情的生物质压缩成型机,用以生产棒状、块状或颗粒生物质成型燃料。我国的生物质螺旋成型机螺杆使用寿命达500小时以上,属国际先进水平。虽然我国在生物质能源开发方面取得了巨大成绩,技术水平却与发达国家相比仍存在一定差距,如:a.新技术开发不力,利用技术单一。我国早期的生物质利用主要集中在沼气利用上,近年逐渐重视热解气化技术的开发应用,也取得了一定突破,但其他技术开展却非常缓慢,包括生产酒精、热解液化、直接燃烧的工业技术和速生林的培育等,都没有突破性的进展。b.由于资源分散,收集手段落后,我国的生物质能利用工程的规模很小;为降低投资,大多数工程采用简单工艺和简陋设备,设备利用率低,转换效率低下。所以,生物质能项目的投资回报率低,运行成本高,难以形成规模效益,不能发挥其应有的、重大的能源作用。c.相对科研内容来说,投入过少,使得研究的技术含量低,多为低水平重复研究,最终未能解决一些关键技术,如:厌氧消化产气率低,设备与管理自动化程度较差;气化利用中焦油问题没有彻底解决,给长期应用带来严重问题;沼气发电与气化发电效率较低,相应的二次污染问题没彻底解决。导致许多工程系统常处于维修或故障的状态,从而降低了系统运行强度和效率。此外,在我国现实的社会经济环境中,还存在一些消极因素制约或阻碍着生物质能利用技术的发展、推广和应用,主要表现为:a.在现行能源价格条件下,生物质能源产品缺乏市场竟争能力,投资回报率低挫伤了投资者的投资积极性,而销售价格高又挫伤了消费者的积极性。b.技术标准未规范,市场管理混乱。在秸杆气化供气与沼气工程开发上,由于未有合适的技术标准和严格的技术监督,很多未具备技术力量的单位和个人参与了沼气工程承包和秸杆气化供气设备的生产,引起项目技术不过关,达不到预期目标,甚至带来安全问题,这给今后开展生物质利用工作带来很大的负面影响。c.目前,有关扶持生物质能源发展的政策尚缺乏可操作性,各级政府应尽快制定出相关政策,如价格补贴和发电上网等特殊优惠政策。d.民众对于生物质能源缺乏足够认识,应加强有关常识的宣传和普及工作。e.政府应对生物质能源的战略地位予以足够重视,开发生物质能源是一项系统工程,应视作实现可持续发展的基本建设工程。4.发展方向与对策 我国的生物质能资源丰富,价格便宜,而经济环境和发展水平对生物质技术的发展处于比较有利的阶段。根据这些特点,我国生物质的发展既要学习国外先进经验,又要强调自己的特色,所以,今后的发展方向应朝着以下几方面:a.进一步充分发挥生物质能作为农村补充能源的作用,为农村提供清洁的能源,改善农村生活环境及提高人民生活条件。这包括沼气利用、秸杆供气和小型气化发电等实用技术b.加强生物质工业化应用,提高生物质能利用的比重,提高生物质能在能源领域的地位。这样才能从根本上扩大生物质能的影响,为生物质能今后的大规模应用创造条件,也是今后生物质能能否成为重要的替代能源的关键。c.研究生物质向高品位能源产品转化的技术,提高生物质能的利用价值。这是重要的技术储备,是未来多途径利用生物质的基础,也是今后提高生物质能作用和地位的关键。d.同时,利用山地、荒地和沙漠,发展新的生物质能资源,研究、培育、开发速生、高产的植物品种,在目前条件允许的地区发展能源农场、林场,建立生物质能源基地,提供规模化的木质或植物油等能源资源。对策 根据上面的主要发展方向,今后我国生物质利用技术能否得到迅速发展,主要取决于以下几个方面: a.在产业化方面:加强生物质利用技术的商品化工作,制定严格的技术标准,加强技术监督和市场管理,规范市场活动,为生物质技术的推广创造良好的市场环境。 b.在工业化生产与规模化应用方面:加强生物质技术与工业生产的联系,在示范应用中解决关键的技术在技术研究方面:既重点解决推广应用中出现的技术难题,在生产实践中提高并考验生物质能技术的可靠性和经济性,为大规模使用生物质创造条件。 c.在技术研究方面:既重点解决推广应用中出现的技术难题,如焦油处理,寒冷地区的沼气技术等,又要同时开展生物质利用新技术的探索,如生物质制油,生物质制氧等先进技术的研究。 d.制定一项生物质能源国家发展计划,引进新技术、新工艺,进行示范、开发和推广,充分而合理地利用生物质能资源。在21世纪,逐步以优质生物质能源产品(固体燃料、液体燃料、可燃气、由、执等形式)取代部分矿物燃料,解决我国能源短缺和环境污染等问题。 4.3优先领域 :秸秆能源利用.有机垃圾处理及能源化.工业有机废渣与废水处理及能源化 .生物质液体燃料 4.4重大关键技术 高效生物质气化发电技术 .有机垃圾IGCC发电技术 .高效厌氧处理及沼气回收技术 .纤维素制取酒精技术 .生物质裂解液化技术 .能源植物培育及利用技术

谁了解林产化工(生物质与能源工程)?


毕业设计关于生物质气化炉的焦油问题或催化剂问题可以从哪些课题着手做?

秸杆气化炉焦油裂解技术 秸秆焦油催化裂解焦油催化裂解的原理 尽管在秸秆气化过程中采取各种措施控制焦油的产生,但实际上气体中焦油的含量仍远远超出应用允许的程度,所以对气体中的焦油进行处理,是有效利用燃气必不可少的过程,其中焦油的催化裂解是最有效、最先进的办法。以往简单的水洗或过滤等办法,只是把焦油从气体中分离出来,然后作为废物排放,既浪费了焦油本身的能量,又会产生大量的污染。而焦油热裂解却可把焦油分解为永久性气体,与可燃气一起被利用。所以它既减少了焦油含量,又利用了焦油中的能量。但热裂解需要很高的温度(1000℃~1200℃),所以实现较困难。催化裂解利用催化剂的作用,把焦油裂解的温度大大降低(约750℃~℃900),并提高裂解的效率,使焦油在很短时间内裂解率达99%以上。化学式描述裂解的转化过程。但不管何种成份,裂解的最终产物与气化气体的成份相似,所以焦油裂解对气化气体质量没有明显影响,只是数量有所增加。对大部分焦油成份来说,水蒸汽在裂解过程中有关键的作用,因为它能和某些焦油成份发生反应,生成CO和H2等气体,既减少炭黑的产生,又提高可燃气的产量。例如,萘在催化裂解时,发生下述反应: C10H8+10H2OÞ10CO+14H2 C10H8+20H2OÞ10CO2+24H2 C10H8+10H2OÞ2CO+4CO2+6H2+4CH4由此可知,水蒸汽非常有利于焦油裂解和可燃气体的产生。气化介质为空气时,产生低热值燃气,热值为4MJ/Nm3-7MJ/Nm3,氢气含量为8%~14%(体积),气化介质为水蒸气时产生中热值燃气,热值为10MJ/Nm3~16MJ/Nm3,氢气含量为30%~60%(体积如者)。催化剂的特点及选择秸秆气化炉焦油破解原理与石油的催化裂解相似,所以关于催化剂的选用可从石油工业中得到启发。但由于焦油催化裂解的附加值小,其成本要求很低才有实际意义。所以人们除利用石油工业的催化剂外,还大量研究了低成本的材料,如石灰石,石英砂和白云石等天然产物。大量的实验表明,很多材料对焦油裂解都有催化作用,其中效果较好又有应用前景的典型材料主要有三种,即木炭、白云石、镍基催化剂,它们的主要性能列于表1中。表7-4 典型催化剂的主要特点名称 反应温度 接触时间 转化效率 特 点镍基催化剂 750℃ ~1.0s 97 % (1) 反应温度低,转换效果好[4](2) 材料较贵,成本较高木炭 800℃900℃ ~0.5s~0.5s 91 %99.5% (1) 木炭为气化自身产物,成 本低(2) 随着反应进行,木炭本身减少白云石* 800℃900℃ ~0.5s~0.5s 95 %99.8 % 转换效率高,材料分布广泛, 成本低*白云石的主要成份为CaCO3和MgCO3,不同地方出产的白云石成份略有不同。从上面三种典型催化结果比较可知,镍基催化剂的效果最好,在750℃时即有很高的裂解率,而其他材料在750℃裂解的效果还不理想,但由于镍基催化剂较昂贵,成本较高,一般秸秆气化技术难以应用,所以只能在气体需要精制或合成汽油的工艺中使用。木炭的催化作用实际上在下吸式气化炉中即有明显的效果,但由于木炭在裂解焦油的同时参与反应,所以消耗很大(在1000℃时达0.1kg/Nm3),对大型秸秆气化来说木炭作催化剂不现实,但木炭的催化作用对气化炉的设计及小型气化炉有一定的指导意义,因为木炭可参与化学反应,与水蒸汽反应生成一氧化碳和氢气,并能与燃气中生成的二氧化碳反应生成一氧化碳,二者都是可燃气体,这样最终能大大增加燃气的热值。化学反应式: C+H2O(水蒸汽)渗迹=CO+H2 C+CO2=2CO白云石(dolomite)是目前为止研究得最多和最成功的催化剂,虽然各地白云石的成份略有变化,但都有催化效果,一般当白云石中CaCO3 /MgCO3在1~1.5时效果较好。白云石作为焦油裂解催化剂的主要优点是催化效率高,成本低,所以具有很好的实用价值。 焦油催化裂解的工艺条件 焦油催化裂解除要求合适的催化剂外,还必须有严格的工艺条件。和其他催化过程一样,影响催化效果最重要因素有温度丛橡并和接触时间,所以其工艺条件也是根据这方面的要求来确定的。下面以白云石为例,分析这些工艺条件的特点温度:任何催化过程必须在合适的温度下才能进行,白云石对焦油的裂解在800℃以上即有很高的裂解率,而在900℃左右即可得到理想的效果(见图4),这一温度和秸杆气化的温度相近,所以比较容易实现,这也是白云石被广泛使用的主要原因之一。接触时间:焦油和催化剂的接触时间是决定催化效果的另一重要因素。由于接触时间又是由气相停留时间和催化剂的比表面积决定的,所以气相停留时间和白云石和颗粒大小成为催化裂解的重要工艺条件。在同一条件下,气相停留时间越长,裂解效果越好(见图4和图5)。对于不同的接触方式,气相停留时间的要求不同,例如,在800℃时,对dp»5mm的固定床,气相停留时间一般要求在0.5s左右,而对于dp»1.5mm的流化床,气相停留时间仅需0.1~0.25s即可[7]。同样的白云石的直径越小,催化效果越好(见图6),但颗粒直径太小,对固定床来说,阻力太大,而对流化床来说飞灰损失太严重,所以白云石的直径有一合适范围,一般dp为2.0~7.0mm为好。实现催化裂解工艺要求的关键对理想的白云石催化剂,裂解焦油的首要条件是足够高的温度(800℃以上),这一温度与流化床气化炉的运行温度相似。有关的实验表明,把白云石直接加入流化床气化炉中对焦油有一定的控制效果,但并不能完全解决问题。这主要是由于气化炉中焦油与催化剂的接触并不充分(因为焦油的产生主要在加料口位置,但即使循环流化床,加料口以上的催化剂数量也不可能很多)。所以为了达到预期效果,气化和焦油裂解一般要求在两个分开的反应炉中进行,这就使实际应用出现下列难题:(1)气化炉出口气体的温度已降至600℃左右,为了使裂解炉的温度维持在800℃以上,必须外加热源或使燃气部分燃烧(一般燃烧份额为5~10%),这就使气化气体质量变差,而且显热损失增加。(2)不管裂解炉采用固定床还是流化炉,气化气体中灰分或炭粒都有可能引起裂解炉进口堵塞。所以裂解炉和气化炉之间需增加气固分离口装置,但不能使气体温度下降太多,这就使系统更加复杂。(3)由于焦油裂解需独立的装置,而且由于高温的要求,裂解装置要连续进行(否则效率太低),这就使催化裂解技术只适于较大型的秸秆气化系统,限制了该技术和适用性。所以应用秸秆焦油催化裂解的关键,就是针对不同的气化特点,设计不同的裂解炉,尽可能降低裂解炉的能耗并提高系统热效率.解决焦油的3种方法 1,水洗,喷淋,生物质过滤。 且不说水洗会二次污染,参与过滤的生物质需经常更换,就说这套净化设施的成本,和需要二次动力就阻碍了户用秸杆汽化炉的发展。有说用离心式引风机能解决二次动力,以便完成水洗,试问:80瓦以下的引风机能配套吗,说是80瓦,在负荷时100瓦也要多,况且单一水洗根本不能完全解决焦油问题,还要有旋风除尘,低温过滤,等一系列方法。所以该方法只适合大型集中供气系统。 2. 高温裂解 每个秸杆汽化炉都有4个反应层,干燥,裂解,还原,氧化〈燃烧〉。为什么我们的汽化炉产的气不纯净,含大量的焦油,水呢?不是我们的炉子没有还原反应层,而是气体在还原层停留的时间太短,温度有太低,满足不了完全还原条件而已。 现重点说还原反应:在还原层已没有氧气的存在,在燃烧反应中生成的二氧化碳在这里同碳,水蒸汽发生还原反应,生成一氧化碳和氢气这些可燃气体,还原层的主要产物为一氧化碳,氢气,这些热气体同燃烧层生成的部分热气体进入裂解层。由于还原反应是吸热反应,在这里温度减低到700度左右。由于水和碳的反应是可逆反应,温度低于700度时,水蒸汽与碳的反应速度极为缓慢,在400度时几乎没有反应发生,只有在800度开始,反映才会有明显增加。热解过程包含许多复杂的反应,250度时的主要产物是co2,co,h2o,焦碳。400度时又发生一些反应,生成co2,co,h2o,h2,ch4,焦碳,焦油。温度继续生高到800度并有足够的停留时间时,出现二次反应,既:还原反应。水和碳反应生成一氧化碳和氢气,焦油裂解为氢,甲烷,轻胫类可燃气体和碳。温度升到1000度时,还原速度达到顶峰,只须1秒时间。 目前我们的秸杆汽化炉产的气不纯净,不易点燃,就是这个还原反应的条件达不到,二次污染不说,气的热值也不高,所以户用秸杆汽化炉要在结构上变化满足还原反应的条件,产的气就是永不冷凝的,纯净的热值高的可燃气体。并不象有些人说的焦油和水是世界难题。 高温裂解一论中指出:焦油,水的排放不仅二次污染,还降低了可燃气体的含量。下吸式汽化炉也仅仅是少部分解决了该问题,它还需配备净化装置。上吸的就不要再提拉。原因就是在还原层的裂解温度不够。高温裂解需要1000-1200度的高温。这温度只有在氧化层《燃烧层》,才能达到,所以,高温裂解在理论上成立,在实验室也能达到理想效果,但,在实际的生产,加工,推广,老百姓应用中达不到理想效果。为解决高温的瓶颈,采用催化裂解。 催化裂解就是在还原反应过程中加入催化剂,参与还原反应。关于催化裂解的反应机理很复杂,不在赘述。单说这催化裂解技术的应用:使用催化剂的最大目的是:把裂解还原的温度降低拉,就是说焦油在催化剂的作用下,只需750度的高温就开始急剧裂解,焦油裂解效率达百分之99,而在还原层的温度刚好满足催化裂解所需温度。就是说催化裂解也需要高温,不过是利用自供热系统而已。并不是象某些人说的低温裂解,在外置净化器内填充催化剂来裂解,这理论纯属忽悠,充其量不过是化学分解而已,与降温冷凝排焦并无二致。催化裂解在750度温度以下并不能实现。 3.催化裂解 焦油含量在0. 02-0. 05g/m,(标准状态下)范围内是可以接受的,但以目前的气化技术分析,在没有采用专门的焦油裂解设备情况下,大部分气化工艺中原始气体中焦油含量在2一50g/m3之间,净化系统的净化效果至少需要99%一99.9%才能达到气化要求,所以单一任何一种除焦过程很难满足气化工艺的要求,需要采用多净化过程相结合的除焦除尘工艺。 以目前的除焦技术看,水洗除焦法存在能量浪费和二次污染现象,净化效果只能勉强达到内燃机的要求;热裂解法在1100℃以上能得到较高的转换效率,但实际应用中实现较困难;催化裂解法可将焦油转化为可燃气,既提高系统能源利用率,又彻底减少二次污染,是目前较有发展前途的技术。 ①焦油催化裂解的原理。尽管在生物质气化过程中采取各种措施控制焦油的产生,但实际上气体中焦油的含量仍远远超出应用允许的程度,所以对气体中的焦油进行处理,是有效利用燃气必不可少的过程,其中焦油的催化裂解是最有效、最先进的办法。以往简单的水洗或过滤等办法,只是把焦油从气体中分离出来,然后作为废物排放,既浪费了焦油本身的能量,又会产生大量的污染。而焦油热裂解却可把焦油分解为永久性气体,与可燃气一起被利用。所以它既减少了焦油含量,又利用了焦油中的能量。但热裂解需要很高的温度(1000-1200℃),所以实现较困难。催化裂解利用催化剂的作用,把焦油裂解的温度大大降低(约750一900℃),并提高裂解的效率,使焦油在很短时间内裂解率达99%以上。 焦油的成分影响裂解的转化过程,但不管何种成分,裂解的最终产物与气化气体的成分相似,所以焦油裂解对气化气体质量没有明显影响,只是数量有所增加。对大部分焦油成分来说,水蒸气在裂解过程中有关键的作用,因为它能和某些焦油成分发生反应,生成CO和H2等气体,既减少炭黑的产生,又提高可燃气的产量。 ②催化剂的特点及选择。生物质焦油催化裂解原理与石油的催化裂解相似,所以关于催化剂的选用可从石油工业中得到启发。但由于焦油催化裂解的附加值小,其成本要求很低才有实际意义.所以人们除利用石油工业的催化剂外,还大量研究了低成本的材料,如石灰石,石英砂和白云石等天然产物。 ③焦油催化裂解的工艺条件。焦油催化裂解除要求合适的催化剂外,还必须有严格的工艺条件口和其他催化过程一样,影响催化效果最重要因素有温度和接触时间,所以其工艺条件也是根据这方面的要求来确定的。 ④实现催化裂解工艺要求的关键。对理想的白云石催化剂,裂解焦油的首要条件是足够高的温度(800℃以上),这一温度与流化床气化炉的运行温度相似。有关的实验表明,把白云石直接加人流化床气化炉中对焦油有一定的控制效果,但并不能完全解决问题。这主要是由于气化炉中焦油与催化剂的接触并不充分(因为焦油的产生主要在加料口位置,但即使循环流化床,加料口以上的催化剂数量也不可能很多)。所以为了达到预期效果,气化和焦油裂解一般要求在两个分开的反应炉中进行,这就使实际应用出现下列难题。 a.气化炉出口气体的温度己降至600℃左右,为了使裂解炉的温度维持在800℃以上,必须外加热源或使燃气部分燃烧(一般燃烧份额为5%一10%),这就使气化气体质量变差,而且显热损失增加。 b.不管裂解炉采用固定床还是流化炉,气化气体中灰分或炭粒都有可能引起裂解炉进口堵塞。所以裂解炉和气化炉之间需增加气固分离口装置,但不能使气体温度下降太多,这就使系统更加复杂。 C.由于焦油裂解需独立的装置,而且由于高温的要求,裂解装置要连续进行(否则效率太低),这就使催化裂解技术只适于较大型的气化系统,限制了该技术和适用性。 所以应用焦油催化裂解的关键,就是针对不同的气化特点,设计不同的裂解炉,尽可能降低裂解炉的能耗并提高系统热效率。

毕业设计关于生物质气化炉的焦油问题或催化剂问题可以从哪些课题着手做?


生物质能的主要利用形式包括哪些?

生物质能的主要利用形式包括直接燃烧和发电、生物质裂解与干馏、生物质致密成型、生物质气化及发电、生物质热解液化、燃料乙醇、生物柴油 、能源作物。1、直接燃烧和发电:直接燃烧大致可分炉灶燃烧、锅炉燃烧、垃圾焚烧和致密成型燃料燃烧四种情况。我国小型生物质燃烧发电也已商业化,南方地区的许多糖厂利用甘蔗渣发电。广东、广西两地共有小型发电机组380台,总装机容量达800兆瓦,云南省也有一些此类电厂。2、生物柴油:目前我国生物柴油研究开发尚处于起步阶段。先后有上海内燃机研究所和贵州山地农机所、中国农业返改世工程研究设计院、辽宁省能源研究所、中国科技大学、河南科学院化学所、华东理工大学、云南师范大学农村能源工程重点实验室等单位都对生物柴油作了不同程度的研究,并取得可喜的成绩。3、生物质致密成型:致密成型燃料燃烧是把生物质固化成型后再采用传统的燃煤设备燃用,主要优点是将分散和疏松的生物燃料进行集中和加密,以便于储存和运输,使之成为便捷和清洁高效的能源。主要缺点是生产成本偏高。4、生物质气化及发电:我国已开发出多种固定床和流化床小型气化炉,以秸秆、木屑、稻壳、树枝等为原料生产燃气,热值为4~10兆焦/立方米。目前用于木材和农副产品烘干的有800多台,村镇级秸秆气化集中供气系统近600处。兆瓦级生物质气化发电系统已推广应用20多套。“十五”期间,按照国家高科技发展计划(863计划)已建成4兆瓦规模生物质气化发电的示范歼正工程。5、能源作物:能源作物种植是近期发展起来的新型产业,是随着生物质能开发与利用的不断深入和扩大逐步形成的。能源作物是指各种用以提供能源的植物,通常包括速生薪炭林、能榨油或产油的植物、可供厌氧发酵用的藻类和其它漏肢植物等。许多能源作物是自然生长的,收集比较困难。现在人们有意识地培育一些能源作物,经过嫁接、驯化、繁殖,不断提高产量,以满足对能源不断增长的需要。甜高粱就是一种很好的能源作物。

生物质能的主要利用形式包括哪些?

发表评论

  • 人参与,0条评论