其他传输设备(传输设备的型号)
- 电商
- 2022-05-16 14:00:53
网络中常用的传输设备有哪些
1.hub hub的主要功能是对接收到的信号进行再生、整形和放大,从而扩大网络的传输距离,同时将所有节点集中在以它为中心的节点上。它工作在OSI(开放系统互连参考模型)参考模型的第一层,即“物理层”。2.Switch(开关)的意思是“开关”。它是一种用于转发电(光)信号的网络设备。它可以为访问交换机的任意两个网络节点提供专用的电信号路径。最常见的交换机是以太网交换机。其他常见的有电话语音交换机、光纤交换机等。3.网桥是早期的双口二层网络设备。网桥的两个端口分别有独立的交换通道,而不是共用一条背板总线,可以隔离冲突域。网桥比集线器具有更好的性能,集线器上的所有端口共享同一个背板总线。后来网桥换成了端口更多的交换机,也可以隔离冲突域。4.路由器路由器是连接两个或多个网络的硬件设备,充当网络之间的网关,是专用的智能网络设备,它读取每个数据包中的地址,然后决定如何传输它。在网络通信中,路由器具有判断网络地址和选择IP路径的功能。在多网络环境中,可以建立一个灵活的链接系统,通过不同的数据包和媒体访问方法链接每个子网。5.中继器中继器是工作在物理层的连接设备。它适用于两个相同网络的互联,主要功能是通过重发或转发数据信号来延长网络传输的距离。中继器是再生和恢复信号的网络设备:OSI模型的物理层设备。
传输设备主要有哪些
传输设备主要包括电缆、光缆和无线电波。传输是交换机之间的通信线路。常用的传输介质包括架空明线、电缆、光缆和无线电波。传输设备的重要作用是延长传输距离,实现远距离通信。为了提高传输效率,复用是传输设备的另一个重要功能。复用技术包括频分复用、时分复用、波分复用和码分复用。保养:1。创造有利于设备有效运行的环境;具体涵盖了设备供电是否异常,机房温湿度,污物处理等等。只有重视这些方面,设备才能运行更长时间,故障次数才能减少。一般来说,先进的通信设备对环境的要求特别高。2.先进的通信设备一般不需要进行一些复杂的日测、月测等调整测试,只要采用有效的监控手段,在一定时间内做好预防性监测即可。如果没有发现故障问题或者没有特别严重的隐患,最好保持机械设备的固定,减少人为因素造成的损坏。3.在设备检查和故障排除过程中,绝不允许在有电的情况下插拔机盘,防止静电。在插拔机器板之前,请确保电源已关闭。同时,实际操作时应配备具有防静电功能的手套。以上内容参考百度百科-传输设备。
常见的传输设备有哪些,说的详细一点就更好了
传输介质是通信网络中发送方和接收方之间的物理路径。计算机网络中使用的传输介质可以分为有线和无线。双绞线、同轴电缆和光纤是三种常用的传输介质。卫星通信、无线通信、红外通信、激光通信、微波通信等信息载体都属于无线传输介质。传输介质的特性对网络数据通信的质量有很大的影响。这些特性是:同轴电缆1)物理特性:说明传输介质的特性。2)传输特性:包括采用模拟信号传输还是数字信号传输,调制技术,传输量,传输频率范围。3)连接性:点对点或多点连接。4)地理范围:互联网上点与点之间的最大距离,可用于建筑物内、建筑物之间或扩展到整个城市。5)抗干扰:防止噪声和干扰影响数据传输的能力。6)相对价格:基于部件、安装和维护的价格。2.常用的传输介质双绞线由两根绝缘导线螺旋绞合而成。双绞线可以减少相互辐射的电磁干扰。双绞线长期以来用于电话通信中的模拟信号传输和数据信号传输,并且是最常用的传输介质。双绞线(1)物理特性双绞线一般由铜制成,提供良好的导电性。(2)具有传输特性的双绞线既可以用来传输模拟信号,也可以用来传输数字信号。对于模拟信号,大约每5 ~ 6公里需要一个放大器。对于数字信号,每隔2~3km使用一个中继器。双绞线最常用于语音的模拟传输。虽然语音的频谱在20 Hz到20 MHz之间,但可理解的语音传输所需的带宽要窄得多。全双工音频通道的标准宽度为300 Hz至4 Hz,即只要带宽为4Hz。因此,通过在双绞线上使用频分复用技术,可以复用多个音频通道。双绞线具有268Hz的带宽,在信道之间留有适当的隔离,因此它可以具有24个频率间信道的容量。使用调制解调器时,双绞线也可以作为模拟信道传输数字数据。根据以前的调制解调器设计,使用相移键控PSK,实际速度可以达到9600kbps以上。在24通道双绞线上,总数据传输速率为230kbps。数字信号也可以通过双绞线发送。使用T1线路的总数据传输速率可以达到1.544Mbps,有可能达到很高的数据传输速率,但与距离有关。新制定的标准10BASE-T总线局域网通过非屏蔽双绞线提供10Mbps的数据传输速率,采用特殊技术可以达到100Mbps。(3)连通性
双绞线既可以 用于点到点的连接,也可以用于多点的连接,作为一种多点媒体,双绞线比同轴电缆的价格低,但性能差,而且只能把持很少几个站,普遍用于点-点连接。 (4)地理范围 双绞线可以很容易地在15km或更大范围内提供数据传输,例如远距离的中继线。局域网的双绞线主要用于一个建筑物内或几个建筑物内,在100kbps速率下传输距离可达1km。 (5)抗干扰性 在低频传输时,双绞线的抗干扰性相当于或高于同轴电缆,但在超过10~100kHz时,同轴电缆就比双绞线明显优越。 (6)价格 以每米2为计算,双绞线比同轴电缆或光导纤维都要便宜得多。同轴电缆 同轴电缆也象双绞线那样由一对导体组成,但它们的按"同轴"形式构成线对,最里层是内芯,外包一层绝缘材料,外面再一层屏蔽层,最外面则是起保护作用的塑料外套。内芯和屏蔽层构成一对导体。同轴电缆又分为基带同轴电缆(阻抗50欧姆)和宽带同轴电缆(阻抗75欧姆)。基带同轴电缆用来直接传输数字信号,宽带同轴电缆用于频分多路复用(FDM)的模拟信号发送, 还用于不使用频分多路复用的高速数字信号发送和模拟信号发送。闭路电视所使用的CATV 电缆就是宽带同轴电缆。 (1)物理特性 单根同轴电缆的直径约为1.02--2.54cm,可在较宽的频率范围内工作。 (2)传输特性 50欧姆仅仅用于数字传输,并使用曼彻斯特编码,数据传输率最高可达10Mbps。公用无线电视CATV电缆既可用于模拟信号发送又可用于数字信号发送。对于模似信号频率可达300--400Mbps。在CATV 电缆上用与无线电和电视广播相同的方法自理模拟数据,例如视频和声频。每个电视通道分配6MHz带宽。每个无线电通道需要的带宽要窄得多,因此在同轴电缆上使用频分多路复用FDM技术可以支持大量的通道。 (3)连通性 同轴电缆适用于点到点和多点连接。基带50欧姆电缆可以支持数千台设备,在高数据传输率下(50Mbps)使用欧姆电缆时设备数目限制在20~30台。 (4)地理范围 典型基带电缆的最大距离限制在几公里,宽带电缆可以达到几十公里,取决于界模拟信号还是数字信号.高速的数字传输或模拟传输(50Mbpds)限制在约1km的范围内. 由于有较高的数据传输率,因此总线上信号间的物理距离非常小,这样,只允许有非常小衰减或噪声,否则数据就会出错. (5)抗干扰性 同轴电缆的抗干扰性能比双绞线强。 (6)价格 安装同轴电缆的费用比双绞线贵,但比光导纤维便宜。光纤 光纤是光导纤维的简称,,它由能传导光波的石英下班纤维,外加保护层构成。 相对于金属来说重量轻、体积(细)。用光纤来传输电信号时,在发送端先要将其转换成光信号,而在接收端又要由光检波器瞠原成电信号。光源可以采用二种不同类型的发光管:发光二极管LED(Light-Emitting)和注入型激光二极管ILD(Injection Laser Diode)。发光二极管LED是一种固态器件,电流通过时就发光,价格较便宜,它产生的是可见光,定向性较差,是通过在光纤石英玻璃媒体内不断反射面向前传播的。这种光纤称为多模光纤(multimode fiber),注入型激光二极管ILD也是一种固态器件,它根据激光器原理进行工作,即激励量子电子疚来产生一个窄带的超辐射光束,产生的是激光,由于激光的定向性好, 它可沿着光导纤维传播,减少了折射也减少了损耗,效率更高,也能传播更长的距离,而且可以保持很高的数据传输率。但是激光二极管要比LED 价格贵得多,这种光纤称为单模光纤(Single mode fider)。 在接收端用来把光波转换为电能的检波器是一个交电二极管。目前使用两种固态器件:PIN检波器和APD检波器。PIM光电二极管是在二极管的P层和N 层之间增加一小段纯(I)硅,雪崩光电二极管(APD)的外部特性和PIN类似,但是使用了较强电磁场。这两种器件基本上是光电计数器。PIN的价格便宜,但是不如APD灵敏。光纤传送信号过程对光载波的调制属于移幅键控法ASK,也称亮度调制(intensity molation)。典型的做法是在给定的频率下,以光的出现和消失来表示两个二进制数字。发光二极管LED和注入型激光二极管ILD的信号都可用这种方法调制,PIN和APD 检波直接响应亮度调制。 (1)物理特性 光计算机网络中均采用两根光纤(一来一去)组成传输系统。按波长范围( 近红外范围内)可分为三种:0.85um波长区(0.8~0.9um),1.3um波长区(1.25~1.35um) 和1.55um波长区(1.53~1.58um) 。不同的波长范围光纤损耗特性也不同,其中0.85um工区为多模光纤通信方式,1.55um波长区为单模光纤通信方式工区为多模光纤.3um波长区有多模和单模两种。 (2)传输特性 光纤通过内部的全反射来传输一束经过编码的光信号。 内部的全反射可以的任何折射指数高于包层媒体折射指数的透明媒体中进行。实际上光纤作为频率范围从1014~1015Hz的波导管,这一范围覆盖了可见光谱和部分红外光谱。从小角度进入纤维的光沿着纤维反射,其它光线则被吸收,光纤的数据传输率可达几千,传输距离达几十公里。上前一第光纤线路上只能传输一个载波,随着技术进步,会出现实用的频分多路复用或者时分多路复用。 (3)连通性 光纤普遍用于点到点的链路。总线拓扑结构的实验性多点系统建成,但是价格还太贵。原则上讲,由于光纤功率损失小,衰减少的特性以及有较大的带宽潜力,因此一段光纤能够支持的分接头数比双绞线或同轴电缆多得多。 (4)地理范围 从上前的技术来看,可以 在6~8km的距离内不用中继器传输。因此光纤适合于在几个建筑物之间通过点到点的链路连接局域网络。 (5)抗干扰性 光纤具有不受电磁干扰或噪声影响的独有特征,适宜在长距离内保持高数据传输率,而且能够提供很好的安全性。 (6)价格 以每米的价格和所需部件(发送器、接收器、 连接器)比双绞线和同轴电缆要贵 .但是双绞线和同轴电缆的价格不大可能下降, 但光纤的价格将随着工程技术的进步会大大下降,使它能与同轴电缆的价格相竞争.由于光纤通信具有损耗低、频带宽、数据传输率高、抗电磁干扰强等特点,对高速率、距离较远的局域网也是很适用的。 低价、可靠的发送器为0.85um波长发光二极管LED, 能支持40Mbps速率和1.5~2km范围的局域网.激光二极管的发送器成本较高,且不能满足面万小时寿命的要求。运行在0.85um波长的光二极管检波器PIM也是低价的接收器.雪崩光二极管检波器的信号增益比PIN大,但要用20~50伏的电源,而PIN 检波器只需5伏电源。如果要达到更高速率和与之配套的光纤连接器的性能也是很重要的,要求每个连接器的连接损耗低于25dB,易于安装、价格较低。3、无线传输媒体编辑 无线传输媒体都不需要架设或铺埋电缆或光纤,而通过大气传输, 上前有三种技术:微波、红外线和激光。 无线通信已广泛应用于电话的领域构成蜂窝式无线电话便携式计算机的出现以及在军事、野外等特殊场合下移动式通信连网的需要促进了数字化无线移动通信的发展现在已开始出现无线局域网产品,能在一幢楼内提供快速、高性能的计算机连网技术。 微小通信的载波频率为2GHz到40GHz范围,因为频率很高,可同时传送大量信息,如一个带宽为2MHz的频段可容纳500条话音线路,用来传输数字信号,可达若干Mbps。蜂窝式无线电话 微小通信的工作频率很高,与通常的无线电波不一样,是沿直线传播的,由于地球表面是曲面,微小在地面的传播距离有限,直接传播的距离与天线的高度有关,天线越高距离越远,但超过一定距离后就要用中继站来接力,另外两种无线通信技术,红外通信和激光通信也象微波通信一样,有很强的方向性,都是沿直线传播的。这三种技术都需要在发送方和接收方之间有一条视线(line-of-sight)通路,有时统称这三者为视线媒体。 不同的是红外通信和激光通信把要传输的信号分别转换为红外光倍和激光信号,直接在空间传播.这三种视线媒体由于都不需要铺设电缆, 对于连接不同建筑物内的局域网特别有用,这是因为很难在建筑物之间架设电缆,不论在地下或用电线杆,特别的要穿越的空间属于公共场所,例如要跨越公路时,会更加困难。而使用无线技术只需在每个建筑物上安装设备。这三种技术对环境气候较为敏感,例如雨、雾和雷电。相对来说,微波对一般雨和雾的敏感度较低。 最后以对微波通信中特殊形式--卫星通信作介绍。卫星通信利用地球同步卫星作中继来转发微波信号,卫星通信可以克服地面微波通信距离的限制。一个同步卫星可以覆盖地球的三分之一以上表面。三个这样的卫星就可以覆盖地球的人武部通信区域,这样地球上的各个地面站之间都可互相通信了。由于卫星信道频带宽,也可彩频分多路复用技术分为若干子信道,有些用于由地面站向卫星发送( 称为上行信道),有些用于由卫星向地面转发(称为下行信道). 卫星通信的优点是容量大,距离远;缺点产传播延迟时间长。从发送站通过卫星转发到接收站的传播延迟时间要花270ms,但这个传播延迟时间是和两站点间的距离可以无关。这相对于地面电缆传播延迟时间约6us/km来说,特别对于近距离的站点要相差几个数量级。
下一篇:无线传输系统(无线传输系统)
- 人参与,0条评论
发表评论